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A new statistical model for the description of the thermody-
namic properties of binary mixed crystals is discussed. The model
is based on an asymmetrical analogue of the quasi-chemical ap-
proximation and the Debye model of a solid. With two inter-
change-energy parameters and two interchange-Debye-tempera-
ture parameters, all important thermodynamic functions, at
constant volume, of the binary mixed crystal can be calculated as
a function of temperature and composition. The binary system
{(1 = x)Nal + xKI} (s) is used for illustration of the model, o 1595
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INTRODUCTION

If two crystalline substances have the same morphol-
ogy and their molecules are of not too different size and
chemical nature, then binary mixed crystals can be
formed. In the literature several statistical thermody-
namic mixing models applicable to binary mixed crystals
are known. In the simplest models, such as the regular,
the subregular, the quasi-regular, and the quasi-sub-regu-
lar mixing models, the different particles A and B are
assumed to be distributed randomly over the lattice sites.
The more sophisticated mixing models, such as the
quasi-chemical and the modified quasi-chemical mixing
models, take into account deviations from random mix-
ing. However, in all these mixing models the effect of
thermal vibrations is not (explicitly) considered. The cen-
tral atoms theory by Lupis and Elliott (1}, originally de-
veloped for binary mixtures of fused metals, deals with

“the effect of thermal vibrations by means of the free-
volume theory leading to the Einstein approximation; see
also the recent work of Tanaka ef al. (2—4). For a detailed
discussion of these models, the reader is referred to the
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monograph by Guggenheim (5), the textbook by Lupis
(6), and in the case of the modified quasi-chemical model,
1o Pelton and Blander (7).

In our opinion, any realistic model that describes the
thermodynamic mixing behavior of solids should be an
integrated approach simultaneously taking into account
local ordering and thermal vibrations. In addition the
model should lead to excess thermodynamic functions
that can have a certain degree of asymmetry. The mixing
model that will be described below is based on an asym-
metrical analogue of the quasi-chemical approximation,
which we shall refer to as the sub-quasi-chemical approx-
imation, and the Debye theory of a solid.

SUB-QUASI-CHEMICAL/DEBYE APPROXIMATION

Average Surroundings

Consider a three-dimensional lattice with N lattice
sites and coordination number z. It is assumed that there
are no vacancies and that the lattice is completely filled
with N, particles A and Ny particles B. In a [attice with
coordination number z each particle forms z pairs, hence,
the total number of pairs is given by }zN

$2N = $z[Na + Ngl,
or equivalently

$zN = {Naa + §Nap} + {Ngg + $Nas},

(1]
= Naa + Npp + Nag,

where Naa, Npg, and Np are the numbers of AA, BB,
and AB pairs, respectively. From [1] follows, for the
number of AA and BB pairs,

Naa = 8zNa — Napl and Ngg = $[zNp — Nagl. [2]
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THERMODYNAMICS OF MIXED CRYSTALS

The mean fraction of atoms A around another atom A
in a binary mixed crystal of A and B, @aa, is given by

oan = —Nan
AA Naa + 3Nag

NAB
ZNA’ [3]

which is simply the ratio of the total number of AA inter-
actions and the total number of pair interactions in which
an A atom is present as the central atom. Note that we
write $ Nap and not Nag implying that we distinguish be-
tween AB and BA. Analogously, we may define the frac-
tions opg, wap, and agy where the first character in the
subscript refers to the central atom and the second char-
acter to the surroundings of that central atom. It can be
shown that Oaa + agp = 1, agp + Gga = 1, and aag +
aps = Nap/Nip where the asterisk denotes a random
distribution of molecules A and B over the lattice sites.
One might say that the o’s are the average local mole
fractions.

Average Interchange Energies

At infinite dilution the partial interchange energies wag
and wpa are given by

was = tap — Hax and wpa = wpa — #pp,  [4)

implying that the difference in energy between breaking
an AA interaction (with pair interaction energy i,4) and
forming an AB interaction (with pair interaction energy
uap) is equal to wap and analogously for wp,. In the sub-
reguiar solution model—a random distribution of A and
B over the lattice sites despite of the nonzero interchange
energies—this leads to the following composition depen-
dence of the interchange energy (8),

w(x} = (1 — Ywps + Xwan, [5]

where wap and wg,s are constants. This interchange en-
ergy multiplied by the total number of AB interactions
N%s = zNx(1 — x) is the energy of mixing

UE(x) = zNx(1 — )[(1 — X)wsa + xwagl. i6]

In the sub-quasi-chemical approximation, N should be
replaced by Nug. Second, the partial interchange ener-
gies wap and wp, are no longer considered constants and
they are to be replaced by the average partial interchange
energies ws and wy given by

WA = QARWAR T QAAWBA, (7]

Wp = QBAWBA T OBRWAB. i8]
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Consequently, the average interchange energy may then
be expressed as

oT, x) = (1 — X)wp + xw,, (9]

and the energy of mixing of the binary mixed crystal
becomes

UE(T, x) = Napo(T, x). [10}
It is easily verified that Eq. [10] reduces to Eq. [6] in the
case of random mixing.

In the quasi-chemical theory (1) the free energy of mix-
ing can be written as

A A(T, X) = —kT'In (g exp [— N;;‘”D [11]

where g, the (approximate) number of configurations, is
given by

_ [Na + Ngl! NXa!Nip![N2s/2] ' N2p/2]!
T T NalNg!  Naa!Npp![Nas/21'[Nap/2]!’

[12]

and o is defined as

w = tap — Huas + vsp). [13]
In the sub-quasi-chemical approximation @ in Eq. [11] is
replaced by (7T, x) of Eq. [9].

Average Debye Temperatures

The Debye cut-off frequency of an atom A entirely
surrounded by other atoms A is denoted by vp 44 Or €x-
pressed as the Debye characteristic temperature Op s =
hvp aatk. For the Debye temperature of an atom A en-
tirely surrounded by atoms B we use the notation ©p ap.
Analogously we have ®pgp and @ppa. The average
Debye temperature of an atom A in a mixture of A and B
may now be approximated by

Opa = 2as®paa T @asOp as, [14]

and for an atom B in a mixture of A and B

®ps = aps®pes + asaOppa. [15]
After the introduction of these assumptions and notations
the Debye partition function of the binary ideally mixed
crystal (®D.AB = ®D,AAs @D.BA = ®D‘BB) and the Debye
partition function of the mixed crystal can be calculated
easily.
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Debye Partition Function of a Binary Mixed Crystal

The logarithm of the Debye partition function is given
by

In Qp = —9N ((;; ) [ [+ ma - expl-yD| ¥ ay,

(16

where y = hwv/kT and yp = Avp/kT. For a binary mechani-
cal mixture as well as for a binary ideally mixed crystal of
A and B we may write

In Q(T, x) = In Qp.aa + In Qp ps. [17]
where In Qp aa and In O pg are the Debye partition func-
tions of pure A and B, and N of Eq. [16] is replaced by N4
and Np, respectively. The Debye partition functions of
atoms A and B in the binary nonideally mixed crystal are
denoted by In Op 4 and In QOp g, respectively. These are
functions of Oy 4 and By given by Egs. [14] and [15].
Analogous to Eq. [17] we write for the binary nonideally
mixed crystal

In Op(T, x) =

In Opa + In Ong, [18]

and the vibrational excess free energy we write as

Op(T, x)

Amix AT, x) ST

= ARVY(T, x) = —kT'In [19]

Total Partition Function of Mixing and
Fts Maximization

The partition functions of the sub-quasi-chemical ap-
proximation and the Debye partition function on mixing
may be combined leading to

AmixA(T, x)
= —kTIn Omix [20]
_ Q%’C(T X) Napo(T, x)
- le{ );}Bgep[ kT ]}

where the sum may be replaced by its maximum term
(which is equivalent to minimizing A.;, A(T, x))

(L2 g [ 2585 o,
or
9 (ln g+ ln%g—c((;i)) W)/BNAB =0, [21]
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leading to

3 In(Naa) + #In(Ngp) — In(3 Nap)

s (G

NagelT, x) _
kT ] =0
{22]

An analytical solution of Eq. [22] is not available and
numerical methods have to be used to solve the equation.
After numerically solving Eq. [22] for the equilibrium
number of AB interactions Nag, we may write the free
energy of mixing in the sub-quasi-chemical/Debye ap-
proximation as

Bess AT, ) :
Q50 [ -

TS Nasa(T, X)D’

= —kTIn ( T

where g is given by [12]. For the excess free energy and
the excess entropy can be written

AKT, x) = ApixA(T, x) — RT{(1 — )In{l - x) + xIn x}
[24]
and
T7 _ AE
EE(T, ¥) = UE(Ts X) . AT, x), [25]

respectively, where UE(T, x) is given by Eq. [10].

The model described above may be used the other way
around, to derive the parameters ©p ap, Op.pa, wag, and
wp, from experimental region-of-demixing data. In order
to do these caiculations we developed the computer pro-
gram SQUAD (9), which is discussed briefly, together
with the SQUAD analysis of a number of binary systems
in Ref. (10), and will be discussed in more detail in a
subsequent paper (11},

Although the sub-quasi-chemical/Debye model is par-
ticularly suitable for the description of simple binary
mixed crystals of the substitutional type, it can also be
applied to simple binary salt systems with a commeon ion.
In that case, the influence of the common-ion sublattice
on the mixing behavior is not considered explicitly. How-
ever, the w and ® parameters obtained by means of an
analysis of region-of-demixing data for these systems in-
corporate the effect of the common-ion sublattice.

Here, we will give as an example the results for the
analysis of the binary system sodium iodide + potassium
iodide as depicted in Figs. 1-5. The experimental region-
of-demixing data as measured by Chanh (13) are plotted
together with the SQUAD analysis of these data in Fig. 1.
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FIG. 1. SQUAD analysis of the region of demixing of {{l — x)Nal
(A) + xKI(B)} (s). ®@pan = 164 Kand Op gy = 131 K (12), woay =998 +
mole lwgy = 1169 - mole ' Oy p = 146.4K and Op gs = 123.3K. The
dots represent the experimental data as measured by Chanh {13).
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FIG. 3. Excess free energy function of {(I — x)Nal + xKI} (s).
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FIG. 4.

Excess energy function of {{1 — x)Nal + xKI} (s).

For the fit as depicted in Fig. 1 the following interchange
parameters were used: wap = 998 J - mole !, wya = 1169
J - mole™}, @pap = 146.4 K, and Opps = 123.3 K. For
the coordination number we used z = 12, i.e., the coordi-
nation number of the sublattice in which substitution
takes place. The free energy of mixing for this system is
depicted as a function of temperature and composition in
Fig. 2. At lower temperatures the system is demixed in
two phases and the binodal compaositions are given by the
common tangent at the free energy of mixing curve at the
specified temperature. At temperatures above approxi-
mately 515 K the free energy of mixing is convex down-
ward in the entire composition range and a continuous
series of binary mixed crystals is formed. The excess free
energy is depicted as a function of temperature and com-
position in Fig. 3. At 0 K the system is completely de-
mixed in the pure substances resulting in a zero excess
free energy. With increasing temperature the excess free
energy rises rapidly toward a maximum and eventually
drops off almost linearly with temperature. The excess
energy is plotted as a function of temperature and compo-

FIG. §.

Excess entropy functions of {{1 — x)Nal + xKI} (s).
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sition in Fig. 4. With increasing temperature the excess
energy increases until a random distribution of A and B
over the lattice sites is reached, i.e., to the subregular
approximation. Finally, in Fig. 5, the excess entropy as a
function of temperature and composition is shown. At
lower temperatures the excess entropy is mainly a config-
urational excess entropy, determined by the nonrandom-
ness of the mixture. At more elevated temperatures the
effect of thermal vibrations is of major importance lead-
ing to a positive excess entropy in the entire composition
range.
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